COMMON PRE - BOARD EXAMINATION - 2023
 MATHEMATICS (041)
 ANSWER KEY

SECTION A

Choose the correct answer:

1	If $x+\sin y=\log x$, then $\frac{d y}{d x}=$ \qquad a) $\frac{\log x-1}{\cos y}$ b) $\frac{x}{1+\cos y}$ c) $\frac{x-1}{\mathrm{x} \cos y}$ d) $\frac{1-x}{x \cos y}$	1
2	The value of $x+y$ for which the matrix $\mathrm{A}=\left[\begin{array}{ccc}0 & -3 & 1 \\ 3 & 0 & -5 \\ x & y & 0\end{array}\right]$ is skew symmetric, is a) 4 b) -4 c) -6 d) 6	
3	If A is a square matrix of order 3 and $\|A\|=12$, then the value of $\mid A$ adj $A \mid$ is \qquad a) 12 b) 144 c) 1728 d) 27	1
4	The positions of a kite at two different timings were noted and the equation of the line joining these two points was given as $x=-3, \frac{2 y+4}{6}=4 z-12$. The direction ratios of the line are: a) $(1,6,1)$ b) $(1,3,4)$ c) $(0,6,1)$ d) $\left(0,3, \frac{1}{4}\right)$	
5	If $\mathrm{f}(\mathrm{x})=\log \sqrt{\tan x}$, then the value of $\mathrm{f}^{\prime}(\mathrm{x})$ at $\mathrm{x}=\frac{\pi}{4}$ is a) 1 b) 0 c) ∞ d) $\frac{1}{2}$	1
6	If A is a square matrix such that $A^{2}=I$, then find the value of $(A-I)^{3}+(A+I)^{3}-7 A$ is a) A b) I-A c) $I+A$ d) 3 A	
7	The value of λ when the projection of $\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$ is 4 units is \qquad a) 5 b) 7 c) ± 5 d) ± 7	1
8	The corner points of the feasible region determined by a system of linear inequalities with $Z=3 x+9 y$ as objective function are $A(0,20), B(15,15), C(5,5)$ and $D(0,10)$. The maximum of Z : a) occurs at only A b) occurs at only B c) occurs at A and B d) occurs at every point on A	1

9	If $\|\vec{a}\|=8,\|\vec{b}\|=3,\|\vec{a} . \vec{b}\|=12 \sqrt{3}$, then find the value of $\|\vec{a} \times \vec{b}\|$ a) $4 \sqrt{3}$ b) $12 \sqrt{3}$ c) 12 d) 6	1
10	If $\left[\begin{array}{cc}3 c+6 & a-d \\ a+d & 2-3 b\end{array}\right]=\left[\begin{array}{cc}12 & 2 \\ -8 & -4\end{array}\right]$, then the value of $\mathrm{ab}-\mathrm{cd}$ is: a) 16 b) -16 c) 4 d) -4	
11	The value of k for which the function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}\frac{x^{3}-8}{x-2} & \text { if } x \neq 2 \\ k & \text { if } x=2\end{array}\right.$ is continuous at $\mathrm{x}=2$ is \qquad . (a) 4 (b) -4 (c) 12 (d) 0	1
12	The value of $\frac{d y}{d x}$, when $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ is : a) $\tan \theta$ b) $-\tan \theta$ c) $\cot \theta$ d) $-\cot \theta$	1
13	The corner points of the feasible region determined by a system of linear equations with $Z=a x+$ by where $a, b>0$ are $(0,0),(2,4),(4,0)$ and $(0,5)$. The relation between a and b so that the maximum of Z occurs at both $(2,4)$ and $(4,0)$ is: a) $a=2 b$ b) $2 a=b$ c) $a=b$ d) $3 a=b$	1
14	The derivative of x^{x} is a) $x x^{x-1}$ b) $x^{x}(1+\log x)$ c) $x^{x} \log x$ d) $x^{x}-\log x$	1
15	If $P(A)=0.4, P(B)=0.8$ and $P(B / A)=0.6$, then $P(A \cup B)=---$ a) 0.96 b) 1.44 c) 1.04 d) 0.24	1
16	Find the degree of the differential equation: $4 \frac{\left(\frac{d^{2} y}{d x^{2}}\right)^{3}}{\frac{d^{3} y}{d x^{3}}}+\frac{d^{3} y}{d x^{3}}=x^{2}-1$ a) 2 b) 3 c) 1 d) Not defined	1
17	Sam plotted three points $A(2,-3), B(x,-1)$ and $C(0,4)$ on a graph sheet. The value of x that makes the points collinear is \qquad a) -10 b) 10 c) $\frac{10}{7}$ d) $\frac{-10}{7}$	1

\begin{tabular}{|c|c|c|}
\hline 18 \& \begin{tabular}{l}
Identify the function from the graph. \\
a) \(\sec ^{-1} x\) \\
b) \(\operatorname{cosec}^{-1} x\) \\
c) \(\tan ^{-1} x\) \\
d) \(\cot ^{-1} x\)
\end{tabular} \& 1 \\
\hline 19 \& Ans: a \& 1 \\
\hline 20 \& Ans: b \& 1 \\
\hline \& SECTION B \& \\
\hline 21 \& \begin{tabular}{l}
Let \(A B\) be the lamp post. Let at any time \(t\), the man \(C D\) be at a distance \(x\) metres from the lamp post and \(y\) metres the length of the shadow. \\
Given:
\[
\frac{\mathrm{dx}}{\mathrm{dt}}=5 \mathrm{~km} / \mathrm{hr}
\] \\
Clearly \(\triangle \mathrm{ABC}\) and \(\triangle \mathrm{CDE}\) are similar
\[
\frac{\mathrm{AB}}{\mathrm{CD}}=\frac{\mathrm{AE}}{\mathrm{CE}}
\]
\[
\begin{aligned}
\& \frac{6}{2}=\frac{x+y}{y} \\
\& 3 y=x+y
\end{aligned}
\]
\[
2 \mathrm{y}=\mathrm{x}
\]
\[
2 \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{dx}}{\mathrm{dt}}
\]
\[
\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{5}{2}, \mathrm{~m} / \mathrm{min}
\]
\end{tabular} \& 1
112

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 22 \& $$
\begin{aligned}
& |a|=|b|=|c|=1, \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0 \\
& \begin{aligned}
|\vec{a}+\vec{b}+\vec{c}|^{2} & =|a|^{2}+|b|^{2}+|c|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}) \\
& =3
\end{aligned} \\
& |\vec{a}+\vec{b}+\vec{c}|=\sqrt{3}
\end{aligned}
$$ \& $1 / 2$

1
$1 / 2$

\hline 23 \& $$
\begin{aligned}
& \begin{aligned}
& y= \cos ^{-1}\left(x^{2}-4\right) \Rightarrow \\
& \text { i.e. }-1 \leq x^{2}-4 \leq 1 \\
& \Rightarrow 3 \leq x^{2} \leq 5
\end{aligned} \begin{array}{l}
\cos y=x^{2}-4 \\
(\text { since }-1 \leq \cos y \leq 1)
\end{array} \\
& \Rightarrow \sqrt{3} \leq|x| \leq \sqrt{5} \\
& \Rightarrow \quad x \in[-\sqrt{5},-\sqrt{3}] \cup[\sqrt{3}, \sqrt{5}] \\
& \text { OR }=\sin ^{-1}\left[\cos \left(\frac{17 \pi}{8}\right)\right] \\
& \sin ^{-1}\left[\cos \left(-\frac{17 \pi}{8}\right)\right]=\sin ^{-1}\left[\cos \left(\frac{\pi}{8}\right)\right] \\
&= \sin ^{-1}\left[\sin \left(\frac{3 \pi}{8}\right)\right] \\
&= \frac{3 \pi}{8}
\end{aligned}
$$ \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$

$11 / 2$
1
1

\hline 24 \& | $\begin{aligned} & \mathrm{y}=\sin (\log \mathrm{x}) \\ & \mathrm{y}_{1}=\cos (\log \mathrm{x}) \frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x}) \\ & \mathrm{y}_{1}=\cos (\log \mathrm{x}) \cdot \frac{1}{x} \\ & \therefore \mathrm{xy}_{1}=\cos (\log \mathrm{x}) \end{aligned}$ |
| :--- |
| Differentiating both sides with respect to x, we get $\begin{aligned} & x y_{2}+y_{1}(1)=-\sin (\log x) \cdot \frac{1}{x} \\ & \Rightarrow x\left[x y_{2}+y_{1}\right]=-\sin (\log x) \\ & \Rightarrow x^{2} y_{2}+x y_{1}=-y \\ & \Rightarrow x^{2} y_{2}+x y_{1}+y=0 \end{aligned}$ | \& $1 / 2$

$11 / 2$
$1 / 2$
$1 / 2$

$1 / 2$

\hline
\end{tabular}

25 Given cartesian form of line as:

$$
\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}=\mu
$$

\therefore General point on line is $(3 \mu-2,2 \mu-1,2 \mu+3)$
Since distance of points on line from $P(1,3,3)$ is 5 units.

$$
\begin{array}{ll}
\therefore & \sqrt{(3 \mu-2-1)^{2}+(2 \mu-1-3)^{2}+(2 \mu+3-3)^{2}}=5 \\
\Rightarrow & (3 \mu-3)^{2}+(2 \mu-4)^{2}+(2 \mu)^{2}=25 \\
\Rightarrow & 17 \mu^{2}-34 \mu=0 \Rightarrow \quad 17 \mu(\mu-2)=0 \quad \Rightarrow \quad \mu=0,2
\end{array}
$$

Required point on line is $(-2,-1,3)$ for $\mu=; 0$, or $(4,3,7)$ for $\mu=2$

OR

(i) $\vec{a}=\vec{i}-\vec{j}+7 \vec{k}$
$\vec{b}=\overrightarrow{5 i}-\vec{j}+\overrightarrow{\lambda k}$
$(\vec{a}+\vec{b})=\hat{\imath}-\hat{\jmath}+7 \hat{k}+5 \hat{\imath}-\hat{\jmath}+\lambda \hat{k}$
$\Rightarrow \vec{a}+\vec{b}=6 \hat{i}-2 \hat{\jmath}+(7+\lambda) \hat{k}$
$\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}=\hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+7 \hat{\mathrm{k}}-(5 \hat{\mathrm{\imath}}-\hat{\mathbf{\jmath}}+\lambda \hat{\mathrm{k}})$
$\Rightarrow \vec{a}-\vec{b}=-4 \hat{\imath}+0 \hat{\jmath}+(7-\lambda) \hat{k}$
Now $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})$
$=(6 \hat{\imath}-2 \hat{\jmath}+(7+\lambda) \hat{k}) \cdot(-4 \hat{\imath}+0 \hat{\jmath}+(7-\lambda) \hat{k})$
Since these two vectors are orthogonal,their dot product is zero.
$\Rightarrow(6 \times-4)+(-2 \times 0)+((7+\lambda) \times(7-\lambda))=0$
$\Rightarrow-24+0+\left(49-\lambda^{2}\right)=0$
$\Rightarrow \lambda^{2}=25$
$\Rightarrow \lambda= \pm 5$

	SECTION C	
26	We have, $A_{1}: A_{2}: A_{4}=4: 4: 2$ $\mathrm{P}\left(\mathrm{~A}_{1}\right)=\frac{4}{10}, \mathrm{P}\left(\mathrm{~A}_{2}\right)=\frac{4}{10} \text { and } \mathrm{P}\left(\mathrm{~A}_{3}\right)=\frac{2}{10}$ where A_{1}, A_{2} and A_{3} denote the three types of flower seed. Let E be the event that a seed germinates and $\overline{\text { Ebe the event that a seed does }}$ not germinate. $\therefore \mathrm{P}\left(\mathrm{E} / \mathrm{A}_{1}\right)=\frac{45}{100}, \mathrm{P}\left(\mathrm{E} / \mathrm{A}_{2}\right)=\frac{60}{100}, \mathrm{P}\left(\mathrm{E} / \mathrm{A}_{3}\right)=\frac{35}{100}$ And $\therefore \mathrm{P}\left(\overline{\mathrm{E}} / \mathrm{A}_{1}\right)=\frac{55}{100}, \mathrm{P}\left(\overline{\mathrm{E}} / \mathrm{A}_{2}\right)=\frac{40}{100}, \mathrm{P}\left(\overline{\mathrm{E}} / \mathrm{A}_{3}\right)=\frac{65}{100}$ $\begin{aligned} & \mathrm{P}\left(\mathrm{~A}_{2} / \overline{\mathrm{E}}\right)=\frac{\mathrm{P}\left(\mathrm{~A}_{2}\right) \cdot \mathrm{P}\left(\overline{\mathrm{E}} / \mathrm{A}_{2}\right)}{\mathrm{P}\left(\mathrm{~A}_{1}\right) \cdot \mathrm{P}\left(\overline{\mathrm{E}} / \mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{~A}_{2}\right) \cdot \mathrm{P}\left(\overline{\mathrm{E}} / \mathrm{A}_{2}\right)+\mathrm{P}\left(\mathrm{~A}_{3}\right) \cdot \mathrm{P}\left(\overline{\mathrm{E}} / \mathrm{A}_{3}\right)} \\ & \frac{\frac{4}{10} \cdot \frac{40}{100}}{\frac{4}{10} \cdot \frac{55}{100}+\frac{4}{10} \cdot \frac{40}{100}+\frac{2}{10} \cdot \frac{65}{100}=\frac{\frac{160}{1000}}{\frac{220}{1000}+\frac{160}{1000}+\frac{130}{1000}}} \\ & =\frac{160 / 1000}{510 / 1000}=\frac{16}{51} \end{aligned}$	1/2

Let X denote the number of doublets. Possible doublets are
$(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)$

Clearly, X can take the values $0,1,2$ or 3 .

Probability of getting a doublet $=6 / 36-1 / 6$
Probability of not getting a doublet $=1-1 / 6-5 / 6$

Now,
$P(X=0)=P($ no doublet $)=5 / 6 \times 5 / 6 \times 5 / 6=125 / 216$
$P(X=1)=P$ (one doublet and two non-doublets)
$=\frac{1}{6} \times \frac{5}{6} \times \frac{5}{6}+\frac{5}{6} \times \frac{1}{6} \times \frac{5}{6}+\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}=3\left(\frac{1}{6} \times \frac{5^{2}}{6^{2}}\right)=\frac{75}{216}$
$P(X=2)=P$ (two doublets and one non-doublet)
$=\frac{1}{6} \times \frac{1}{6} \times \frac{5}{6}+\frac{1}{6} \times \frac{5}{6} \times \frac{1}{6}+\frac{5}{6} \times \frac{1}{6} \times \frac{1}{6}=3\left(\frac{1}{6^{2}} \times \frac{5}{6}\right)=\frac{15}{216}$
and $P(X=3)=P$ (three doublets) $=\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}=\frac{1}{216}$.
Thus, the required probability distribution is

X	0	1	2	3
$P(X)$	$\frac{125}{216}$	$\frac{75}{216}$	$\frac{15}{216}$	$\frac{1}{216}$

Consider, $I=\int \sqrt{\tan x}+\sqrt{\cot x} d x$
$=\int \sqrt{\frac{\sin x}{\cos x}}+\sqrt{\frac{\cos x}{\sin x}} d x$
$=\int \frac{\sin x+\cos x}{\sqrt{\cos x \sin x}} d x$
Let $\sin x-\cos x=t$
$\Rightarrow(\cos x+\sin x) d x=d t$
Also, $(\sin x-\cos x)^{2}=t^{2}$
$\Rightarrow 1-2 \sin x \cos x=t^{2}$
$\Rightarrow \sin x \cos x=\frac{1-t^{2}}{2}$
$\Rightarrow \sqrt{\sin x \cos x}=\frac{\sqrt{1-t^{2}}}{\sqrt{2}}$
$\therefore \int \frac{\sin x+\cos x}{\sqrt{\cos x \sin x}} d x=\sqrt{2} \int \frac{1}{\sqrt{1-t^{2}}} d t$
$=\sqrt{2} \sin ^{-1} t$
$=\sqrt{2} \sin ^{-1}(\sin x-\cos x)$

28
$F(\lambda x, \lambda y)=\frac{2 \lambda y e^{2 x \lambda y}}{2 \lambda \mathrm{xe}^{2 x \lambda y}-\lambda y}=\frac{2 y^{\mathrm{y}^{x y y}}}{2 \mathrm{xe}^{\mathrm{xy}}-\mathrm{y}}=\mathrm{F}(\mathrm{x}, \mathrm{y})$
Hence, it is a homogenous function.
Putting $\frac{x}{y}=v$
$\frac{d x}{d y}=v+y \frac{d v}{d y}$
$\frac{\mathrm{dx}}{\mathrm{dy}}=\frac{2 \mathrm{ve}^{\mathrm{v}}-1}{2 \mathrm{e}^{\mathrm{v}}}$
$\mathrm{v}+\mathrm{y} \frac{\mathrm{dv}}{\mathrm{dy}}=\frac{2 \mathrm{ve}^{\mathrm{v}}-1}{2 \mathrm{e}^{\mathrm{v}}}$
$\frac{d y}{y}=-2 e^{v} d v$
$\log y=-2 e^{v}+C$
$\log y+2 e^{x y}=C$

	$\begin{aligned} & \frac{d x}{d y}+\left(\frac{1}{1+y^{2}}\right) x=\frac{\tan ^{-1} y}{1+y^{2}} \\ & \text { Integrating factor }=e^{\tan ^{-1} y} \\ & \text { Solution is } \mathrm{x} e^{\tan ^{-1} y}=\int \frac{\tan ^{-1} y}{1+y^{2}} e^{\tan ^{-1} y} d y+\mathrm{C} \\ & \tan ^{-1} y=t \\ & \mathrm{x} e^{\tan ^{-1} y}=\int t e^{t} d t+\mathrm{C}_{1} \\ & \mathrm{x} e^{\tan ^{-1} y}=\tan ^{-1} y e^{\tan ^{-1} y}-e^{\tan ^{-1} y}+\mathrm{C}_{1} \\ & \mathrm{x} e^{\tan ^{-1} y}-\tan ^{-1} y e^{\tan ^{-1} y}+e^{\tan ^{-1} y}=\mathrm{C}_{1} \\ & \mathrm{x}-\tan ^{-1} y+1=\mathrm{C} \end{aligned}$
29	$\int \frac{\sin x}{(1-\cos x)(2-\cos x)} d x$ Let $\mathrm{t}=\cos \mathrm{x} \therefore \mathrm{dt}=-\sin \mathrm{xdx}$ $=-\int \frac{\mathrm{dt}}{(1-\mathrm{t})(2-\mathrm{t})}$ Now, $\frac{1}{(1-t)(2-t)}=\frac{A}{(1-t)}+\frac{B}{(2-t)}$ $\begin{aligned} & \therefore 1=A(2-t)+B(1-t) \\ & \therefore 2 A+B=1 \\ & \therefore-A-B=0 ; A+B=0 \\ & A=1, B=-1 \\ & \therefore \frac{1}{(1-t)(2-t)}=\frac{1}{1-t}-\frac{1}{2-t} \\ & \therefore \int \frac{1}{(1-t)(2-t)} d t=\int \frac{d t}{1-t}+\int \frac{d t}{t-2} \\ & \therefore \int \frac{d t}{(1-t)(2-t)}=-\ln (1-t)+\ln (t-2) \\ & \therefore \int \frac{\sin x}{(1-\cos x)(2-\cos x)} d x=\ln \left(\frac{\cos x-2}{1-\cos x}\right) \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline 30 \& \& 2 \\
\hline \& Corner Point \(Z=100 x+120 y\) \& 1 \\
\hline \& \((0,0) \quad 100 \times 0+120 \times 0=0\) \& \\
\hline \& \((0,10) \quad 100 \times 0+120 \times 10=1200\) \& \\
\hline \& \[
\left(\frac{17}{3}, 0\right) \quad 100 \times \frac{17}{3}+120 \times 0=\frac{1700}{3}
\] \& \\
\hline \& \((3,8) \quad 100 \times 3+120 \times 8=1260 \rightarrow\) Maximum \& \\
\hline \& The maximum value of \(Z\) is 1260 at \(x=3, y=8\). \& \\
\hline 31 \& \begin{tabular}{l}
Given, \(I=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x\)
\[
I=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\cos ^{2}(\pi-x)} d x=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x-(2)
\] \\
(1) \(+(2)\)
\[
\begin{aligned}
\& \Rightarrow 2 I=\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x=\pi \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x \\
\& \quad \Rightarrow I=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

1

\hline
\end{tabular}

32 Let the cartesian equation of line passing through $(1,2,-4)$ be
$\frac{\mathrm{x}-1}{\mathrm{a}}=\frac{\mathrm{y}-2}{\mathrm{~b}}=\frac{\mathrm{z}+4}{\mathrm{c}} \ldots$ (i)
Given lines are

$$
\begin{align*}
& \frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \tag{ii}\\
& \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5} . \tag{iii}
\end{align*}
$$

Obviously parallel vectors $\overrightarrow{b_{1}}, \overrightarrow{b_{2}}$, and $\overrightarrow{b_{3}}$ of (i), (ii) and (iii) respectively are given as
$\overrightarrow{b_{1}}=\hat{a}+b \hat{i}+c \hat{k} ; \overrightarrow{b_{2}}=3 \hat{i}-16 \hat{j}+7 \hat{k} ; \overrightarrow{b_{3}}=3 \hat{i}+8 \hat{j}-5 \hat{k}$
According to question
(i) \perp (ii) $\overrightarrow{b_{1}} \perp \overrightarrow{b_{2}} \Rightarrow \quad \Rightarrow \overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}=0$
(i) \perp (iii) $\Rightarrow \overrightarrow{b_{1}} \perp \overrightarrow{b_{3}} \Rightarrow \overrightarrow{b_{1}} \cdot \overrightarrow{b_{3}}=0$

Hence, $3 \mathrm{a}-16 \mathrm{~b}+7 \mathrm{c}=0$ \qquad
and $3 a+8 b-5 c=0$
From equation (iv) and (v), we get

$$
\begin{aligned}
& \frac{a}{80-56}=\frac{b}{21+15}=\frac{c}{24+48} \\
& \Rightarrow \frac{a}{24}=\frac{b}{36}=\frac{c}{72} \Rightarrow \frac{a}{2}=\frac{b}{3}=\frac{c}{6}=\lambda(\text { say }) \\
& \Rightarrow a=2 \lambda, b=3 \lambda, c=6 \lambda
\end{aligned}
$$

Putting the value of a, b, c in (i), we get the required cartesian equation of line as

$$
\frac{x-1}{2 \lambda}=\frac{y-2}{3 \lambda}=\frac{z+4}{6 \lambda} \Rightarrow \frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}
$$

Equation of the line passing through the point $(0,-2,4)$ and parallel to the above line is $\frac{x}{2}=\frac{y+2}{3}=\frac{z-4}{6}$

OR

Let M be the foot of the perpendicular drawn from the point $\mathrm{A}(1,2,1)$ to the line joining $\mathrm{P}(1,4,6)$ and $\mathrm{Q}(5,4,4)$.

Equation of a line passing through the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is
$\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{y}_{2}-\mathrm{y}_{1}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}_{2}-\mathrm{z}_{1}}$
Equation of the required line passing through $P(1,4,6)$ and $Q(5,4,4)$ is

$$
\frac{x-1}{4}=\frac{y-4}{0}=\frac{z-6}{-2}=\lambda
$$

$x=4 \lambda+1 ; y=4 ; z=-2 \lambda+6$
Coordinates of M are $(4 \lambda+1,4,-2 \lambda+6) \ldots(1)$
The direction ratios of AM are
$4 \lambda+1-1,4-2,-2 \lambda+6-1$
i.e. $4 \lambda, 2,-2 \lambda+5$

The direction ratios of given line are $4,0,-2$
Since $A M$ is perpendicular to the given line

$$
\therefore 4(4 \lambda)+0(2)+(-2)(-2 \lambda+5)=0
$$

$$
\therefore \lambda=\frac{1}{2}
$$

Putting $\lambda=\frac{1}{2}$ in (i), the coordinates of M are $(3,4,5)$
Coordinates of Image (5, 6, 9)

33	Given that $\begin{aligned} & x+y+z=10 \\ & 2 x+y=13 \\ & x+y=4 z \end{aligned}$ Rewrite the above equations as, $\begin{aligned} & x+y+z=10 \\ & 2 x+y=13 \\ & x+y-4 z=0 \\ & {\left[\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 1 & 1 & -4 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 10 \\ 13 \\ 0 \end{array}\right]} \end{aligned}$ $\Rightarrow A X=B$, where, $A=\left[\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 1 & 1 & -4 \end{array}\right], X=\left[\begin{array}{l} x \\ y \\ z \end{array}\right] \text { and } B=\left[\begin{array}{c} 10 \\ 13 \\ 0 \end{array}\right]$ Thus, $X=A^{-1} B$ Let us find the determinant of A : $\begin{array}{r} \|\mathrm{A}\|=1(-4-0)-1(-8-0)+1(2-1)=-4+8+1=5 \\ \text { Adj } \mathrm{A}=\left[\begin{array}{ccc} -4 & 5 & 1 \\ 8 & -5 & 2 \\ 1 & 0 & 1 \end{array}\right] \\ \mathrm{A}^{-1}=\frac{\text { AdjA }}{\|\mathrm{A}\|}=\frac{1}{5}\left[\begin{array}{ccc} -4 & 5 & 1 \\ 8 & -5 & 2 \\ 1 & 0 & 1 \end{array}\right] \end{array}$ Thus $X=A^{-1} B$ $\begin{aligned} & \Rightarrow X=\frac{1}{5}\left[\begin{array}{ccc} -4 & 5 & 1 \\ 8 & -5 & 2 \\ 1 & 0 & 1 \end{array}\right]\left[\begin{array}{c} 10 \\ 13 \\ 0 \end{array}\right] \\ & =\frac{1}{5}\left[\begin{array}{l} 25 \\ 15 \\ 10 \end{array}\right] \\ & =\left[\begin{array}{l} 5 \\ 3 \\ 2 \end{array}\right] \\ & x=5, y=3, z=2 \end{aligned}$	1

$B=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right] A=\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 4 & -1 & 5\end{array}\right]$
$\mathrm{BA}=\left[\begin{array}{ccc}2+4-0 & 2-2+0 & -4+4+0 \\ -4-12+16 & 4+6-4 & -8-12+20 \\ 0-4+8 & 0-2+2 & 0-4+10\end{array}\right]$
$B A=\left[\begin{array}{lll}6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6\end{array}\right]$
Now, we can see that it is $B A=6 I$. where I is the unit Matrix
Or, $\mathrm{B}^{-1}=\frac{1}{6}\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 4 & -1 & 5\end{array}\right]$

Now, BX $=\mathrm{C}$
where, $B=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $C=\left[\begin{array}{c}3 \\ 17 \\ 7\end{array}\right]$
$\therefore X=B^{-1} C$
$\Rightarrow X=\frac{1}{6}\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right]\left[\begin{array}{c}3 \\ 17 \\ 7\end{array}\right]$
$\left.\begin{array}{l}\Rightarrow\left[\begin{array}{l}x \\ y \\ z \\ -x \\ y \\ z\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}6+34-28 \\ -12+34-28 \\ 6-17+35\end{array}\right] \\ 12 \\ -6 \\ 24\end{array}\right]$
$\therefore x=2, y=-1$ and $z=4$.

34 | Let | $(a, b) \in N \times N$ |
| :--- | :--- |
| then, | $a^{2}+b^{2}=a^{2}+b^{2}$ |
| \because | a^{2} |
| \therefore | $(a, b) R(a, b)$ |

Hence R is reflexive.
Let $(a, b),(c, d) \in N \times N$ be such that

$$
\begin{array}{cc}
& (a, b) R(c, d) \\
\Rightarrow & a^{2}+d^{2}=b^{2}+c^{2} \\
\Rightarrow & c^{2}+b^{2}=d^{2}+a^{2} \\
\Rightarrow & (c, d) R(a, b)
\end{array}
$$

Hence, R is symmetric.
Let $(a, b),(c, d),(e, f) \in N \times N$ be such that
$(a, b) R(c, d),(c, d) R(e, f)$.

$$
\begin{array}{llrl}
\Rightarrow & a^{2}+d^{2} & =b^{2}+c^{2} \ldots \text { (i) } \\
\text { and } & c^{2}+f^{2} & =d^{2}+e^{2} \ldots \text { (ii) } \tag{ii}
\end{array}
$$

Adding eqn. (i) and (ii),
$\Rightarrow a^{2}+d^{2}+c^{2}+f^{2}=b^{2}+c^{2}+d^{2}+e^{2}$
$\Rightarrow \quad a^{2}+f^{2} \quad=b^{2}+e^{2}$
$\Rightarrow \quad(a, b) R(e, f)$
Hence, R is transitive
$\therefore \mathrm{R}$ is an equivalence relation.
Solving $x+y=2$ and $y^{2}=x$ simultaneously, we get the points of intersection as (1 ,

1) and (4, -2).

The required area $=$ the shaded area $=\int_{0}^{1} \sqrt{x} d x+\int_{1}^{2}(2-x) d x$

	$\begin{aligned} & =\frac{2}{3}\left[x^{\frac{3}{2}}\right]_{0}^{1}+\left[2 x-\frac{x^{2}}{2}\right]_{1}^{2} \\ & =\frac{2}{3}+\frac{1}{2}=\frac{7}{6} \text { square units } \end{aligned}$	1 1
	SECTION E	
36	$\begin{aligned} & f(x)=-16 x^{2}+m x+3,0 \leq x \leq 10 \\ & f^{\prime}(x)=-32 x+m . \end{aligned}$ 4 is a critical point. Hence $f^{\prime}(4)=0 \Rightarrow m=32 \times 4$ $m=128$ b) $(0,4)$ is the interval in which the function is strictly increasing and in $(4,10)$ it is strictly decreasing.	2
37	a) $C=1200 t+\frac{3 v^{2}}{16} t \therefore$ $\begin{aligned} & t \therefore C=1200\left(\frac{S}{v}\right)+\frac{3 v^{2}}{16}\left(\frac{S}{v}\right) \\ & \therefore C=1200\left(\frac{S}{v}\right)+\frac{3 v S}{16} \end{aligned}$ b) $\frac{d C}{d v}=0 \Rightarrow-1200 \frac{S}{v^{2}}+\frac{3 S}{16}=0 \quad \therefore v=80$ c) Use first derivative test, $\therefore v=\frac{80 \mathrm{~km}}{\mathrm{hr}}$ OR $\frac{d^{2} C}{d v^{2}}=2400 \times \frac{s}{v^{3}} \quad \therefore \frac{d^{2} C}{d v^{2}}=2400 \times \frac{S}{v^{3}}>0$ Minimum cost if distance is $100 \mathrm{~km}=$ Rs 3000	1 1 2
38	a. $\frac{3}{20}$ b. $\frac{13}{30}$ c. $\frac{1}{6}$ OR $\frac{5}{6}$	1 1 2

